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Abstract

Speech Intelligibility (SI) is the perceived quality of sound transmission. In healthcare settings, the 

ability to communicate clearly with coworkers, patients, etc. is crucial to quality patient care and 

safety. The objectives of this study were to 1) assess the suitability of the Speech Transmission 

Index (STI) methods for testing reusable and disposable facial and respiratory personal protective 

equipment (protective facemasks [PF], N95 filtering facepiece respirators [N95 FFR], and 

elastomeric half-mask air-purifying respirators [EAPR]) commonly worn by healthcare workers, 

2) quantify STI levels of these devices, and 3) contribute to the scientific body of knowledge in the 

area of SI. SI was assessed using the STI under two experimental conditions: 1) a modified version 

of the National Fire Protection Association 1981 Supplementary Voice Communications System 

Performance Test at a Signal to Noise Ratio (SNR) of −15 (66 dBA) and 2) STI measurements 

utilizing a range of modified pink noise levels (52.5 dBA (−2 SNR) − 72.5 dBA (+7 SNR)) in 5.0 

dBA increments. The PF models (Kimberly Clark 49214 and 3M 1818) had the least effect on SI 

interference, typically deviating from the STI baseline (no-mask condition) by 3% and 4% STI, 

respectively. The N95FFR (3M 1870, 3M 1860) had more effect on SI interference, typically 

differing from baseline by 13% and 17%, respectively for models tested. The EAPR models (Scott 

Xcel and North 5500) had the most significant impact on SI, differing from baseline by 42% for 

models tested. This data offers insight into the performance of these apparatus with respect to STI 

and may serve as a reference point for future respirator design considerations, standards 

development, testing and certification activities.
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INTRODUCTION

Speech Intelligibility (SI) and clear communication among healthcare workers (HCWs) are 

vital components of healthcare delivery systems and occupational safety. This is especially 

true in times of public health emergencies and disaster situations. With approximately 13 

million HCWs in the United States, clear communication in healthcare has a broad scope 

with significant impacts. SI is the quality or condition of speech being intelligible and 

clearly understood. It is well-documented that hospitals are often loud environments, which 

makes the issue of SI challenging. Hospital noise levels have been rising consistently since 

the 1960s. The background noise levels in hospitals rose from 57 dBA in 1960 to 72 dBA 

today during daytime hours, and from 42 dBA in 1960 to 60 dBA today during nighttime 

hours (1). The World Health Organization (WHO) guidelines for hospital noise levels are 35 

dBA during the day and 30 dBA at night in patient rooms, with recommended nighttime 

peaks of 40 dBA (2). Many studies indicate that peak hospital noise levels often exceed 85 

dBA to 90 dBA (3-8). Noise from alarms and certain equipment that exceeds 90 dBA (for 

example, portable X-ray machines) are comparable to walking next to a busy highway when 

a motorcycle or large truck passes. These increased noise levels can pose significant 

challenges to communication among hospital staff and with patients. Busch examined 

hospital noise levels reported in 35 published research studies over the last 45 years (1). It 

was found that not one published study reported noise levels that complied with the WHO 

guidelines for noise levels in hospitals (1).

One challenge to SI in the healthcare setting is the increased use of facial and respiratory 

personal protective equipment (PPE) such as N95 filtering facepiece respirators (N95 FFR), 

protective facemasks (PF) and elastomeric half-mask air-purifying respirators (EAPR) 

necessary for worker and/or patient protection. Facial and respiratory PPE covering the 

mouth and nose have been reported to diminish SI (9,10) and impair the wearer’s verbal 

communication ability by attenuating sound transmission, and reducing intelligibility 

because of muffled speech and impingement on the nasal alae (11,12). Compromised speech 

related to respirator use can occur at ambient noise levels as low as 40 dB(A) (13). Anecdotal 

reports of communication problems among HCWs wearing commonly used facial and 

respiratory PPE have led to suggestions that respirators may interfere with occupational 

duties (14). Some types of respirators have also been found to restrict articulation of the 

mandible (15). In a survey of hospital staff from Toronto, Ontario, Canada after the Severe 

Acute Respiratory Syndrome (SARS) outbreak in that city, 47 percent of the 2,001 

respondents related that wearing of facial and respiratory PPE was associated with 

communication difficulty (16).

As part of Project BREATHE (Better Respiratory Equipment Using Advanced Technologies 

for Healthcare Employees), SI is designated as one of the 28 desirable performance 

characteristics to improve respiratory protective equipment so that “respirators should not 

impede, and preferably improve, the ability of others to hear the wearer’s spoken 

words” (17). Project BREATHE seeks to develop respirator test methods, respirator standards 

for a “B95”1 respirator class, and invent novel design features, which together will lead to 

commercial products that are more comfortable and useable for HCWs (18). Although a 

priority within Project BREATHE, the state of test methods for occupational interference 
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(which includes SI) was recently deemed not practical for inclusion in a draft B95 

standard (19). The Institute of Medicine (IOM) has also identified communication 

interference as a key issue to be studied and rectified in the next generation of facial and 

respiratory PPE developed for HCWs (14).

Previous studies involving SI have primarily employed the use of the Modified Rhyme Test 

(MRT) in clinical settings or controlled listener/speaker orientations (20). The MRT is 

standardized under the American National Standards Institute (ANSI) S3.2 1960 and 

involves a listener attempting to properly identify certain key words preceded by a carrier 

sentence. For example, Radonovich et al. found that the odds of correctly hearing a word 

spoken by a HCW wearing an EAPR in an Intensive Care Unit (ICU) setting was 

approximately 0.46, compared with other commonly used respirators in the same location, 

on average (20). However, the MRT involves human test subjects, causing results to be 

variable and validity to be diminished based on each individual’s unique variations in speech 

and the way listeners interpret those variations in speech. Sample size has also been small in 

previous studies, which may have decreased reliability (20). Human subject testing is also 

time-consuming, expensive, and often leads to incomplete data sets due to test subject 

attrition. Furthermore, the spoken words in the MRT are not industry specific, which plays a 

vital role in a field such as healthcare where highly technical words and sentence structures 

are used, as well as numerous acronyms.

Recently, an alternative method for assessing speech transmission, called the Speech 

Transmission Index (STI), has been applied to respirators and included in a voluntary 

consensus standard for Self-Contained Breathing Apparatus (SCBA) by the National Fire 

Protection Association (NFPA) in their 1981 Standard on Open-Circuit SCBA for 

Emergency Services (2013 edition). STI testing is a quantitative and objective method of 

speech transmission quality assessment in the presence of ambient (pink) noise. The STI 

was developed in the 1970s and is standardized under the International Electrotechnical 

Commission (IEC) Standard 60268-16. In contrast to subjective methods used to measure 

SI, the STI offers the advantages of being objective, highly repeatable, reproducible and 

time-efficient. A single value is calculated by the Modulation Transfer Function (MTF) 

using the signal-to-noise ratios per octave band with weightings that reflect the SI. The STI 

uses seven octave bands in the range of 125Hz to 8000Hz.

The objectives of this collaborative study between the National Institute for Occupational 

Safety and Health (NIOSH) (Pittsburgh, PA) and respirator manufacturer Scott Safety Inc. 

(Monroe, NC) were to 1) assess the suitability of the STI method in the NFPA 1981 standard 

for testing facial PPE commonly worn by HCW, 2) quantify STI levels of these devices, and 

3) contribute to the scientific body of knowledge for Project BREATHE and other research 

in the area of SI.

1“B95” or “biological N95” connotes protection against biological particulates as described in http://www.publichealth.va.gov/docs/
cohic/project-breathe-report-2009.pdf
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MATERIALS AND METHODS

Facial and Respiratory PPE Selection

The facial and respiratory PPE models and sizes selected and used in this study are 

summarized in Table I. Three types of facial PPE were tested: 1) N95 FFR, 2) PF and 3) 

EAPR. Each model was selected based on U.S. market share, ubiquity in healthcare 

workplace settings, use in previous studies (20), and tolerability among healthcare workers 

based on previous occupational health studies (21,22). SI interference of these PPE have not 

been previously investigated to this degree under such controlled conditions as utilized in 

this study. Furthermore, SI interference of these types of PPE has not been extensively 

investigated utilizing a quantitative methodology such as the STI. It must be noted that the 

EAPR models tested did not contain voicemitters (also known as speaking diaphragms).

Modifications to NFPA 1981 standard

The STI component of the NFPA 1981 standard method was developed for tight-fitting, full 

facepiece SCBA respirators and thus is in need of validation for use on other respirator 

types. To assess the method for respirator and facial PPE use it was desirable to examine 

both repeatability measurements within each sample donning, and reproducibility 

measurements between each sample donning. The NFPA method requires three facepiece 

samples, each of which is donned on the manikin five times, with three measurements taken 

during each donning, for a total of 45 measurements. To assess repeatability within each 

donning, it is desirable to have a sample size larger than three repeats. Ideally, 28 

measurements per sample and donning would need to have been performed in order to 

achieve the desired statistical power of 0.90. This would have led to a total of over 1,500 

measurements for the six models tested. However, due to time constraints, this power level 

was not within the scope of this study. In an effort to increase the number of repeat 

measurements, the current study used three respirator samples, which were donned three 

times with five measurements taken during each donning. Utilizing this type of measurement 

protocol allowed for a better assessment of repeat measurements in a consolidated 

timeframe, while still maintaining a sufficient quantity of replicates.

Test System Setup

The test system setup conforming to the NFPA 1981 standard for SI testing was used for all 

experimental conditions. Testing took place at Technicon Acoustics (Concord, NC) inside a 

hemi-anechoic chamber. The test setup schematic is shown in Figure 1 per the NFPA 1981 

Standard. Outside the hemi-anechoic chamber, a computer (Dell, Round Rock, TX), two 

graphic equalizers (Behringer-Willich, GE), pink noise generator and acoustic analyzer (NTI 

Audio AG, Schaan, LS) and STI test output signal were used. Inside the hemi-anechoic 

chamber, a K.E.M.A.R HATS Manikin (GRAS, Holte, DE), pink noise speaker and 

microphone (NTI Audio AG) were used. Prior to initiating each test, each model containing 

a nasal bar (3M 1860, 3M 1870, KC Tecnol 49214 and 3M 1810F) was molded to the 

K.E.M.A.R manikin in the same manner that a human would in order to achieve the best fit 

possible, not a protective fit. Figure 2 further depicts the STI testing setup inside the hemi-

anechoic chamber and specifies equipment distances. All equipment was set up and 
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calibrated conforming to the NFPA 1981 standard each day prior to testing by staff familiar 

with the testing setup, system and calibration of equipment.

Speech Intelligibility Assessment

SI was measured for each PPE sample utilizing the STI under two different experimental 

conditions: 1) STI measurements using a modified version (3 samples × 5 replicate 

measurements) of the NFPA 1981 standard and a signal to noise ratio (SNR) of −15 (66 

dBA) and 2) STI measurements utilizing modified pink noise levels of 52.5 dBA (−2 SNR) 

to 72.5 dBA (+7 SNR) in 5.0 dBA increments to further characterize the SI of each 

facepiece. Three donnings of each facial PPE sample were performed under each 

experimental condition with five replicate measurements per donning. To ensure 

consistency, the same investigator performed each donning. Each STI value was measured 

directly in front of the K.E.M.A.R HATS Manikin at 1.5m per NFPA 1981. This distance 

was re-measured and readjusted inside the hemi-anechoic chamber when necessary to ensure 

the utmost accuracy (Figure 2).

Five STI measurements were taken for each sample (n=3) of each facepiece model 

(facepiece model n=6) per background noise decibel range (52.5, 57.5, 62.5, 67.5 and 72.5 

dBA. This resulted in 25 STI measurements per sample (5 measurements × 5 background 

ranges) for a total of 75 STI measurements (25 measurements × 3 samples) per model.

DATA ANALYSIS

Data analysis was completed using Statistical Analysis Software (SAS) and Microsoft Excel. 

For this study it was desirable to examine both repeatability (defined as variability in 

measurements within each sample donning) and reproducibility (defined as variability in 

measurements between sample donnings).. The NFPA method requires three face piece 

samples, each of which is donned on the manikin five times with three measurements taken 

during each donning for a total of 45 measurements. To assess repeatability within each 

donning it is desirable to have a sample size larger than three repeats, ideally 28 

measurements per sample and donning would have been performed in order to achieve the 

desired power of 0.90 (the implemented modification had a negligible impact on the power). 

This would have lead to a total of over 1500 measurements for the six models under test. 

The modified version of the NFPA method was utilized in order to yield more STI 

measurements per facepiece sample to assess the variability and repeatability. An analysis of 

variance (ANOVA) was performed for each respirator model comparing the means by 

sample (3 samples per model) and donning (3 donnings per sample) as well.

RESULTS

Repeatability & Reproducibility

To assess the repeatability of measurements, standard deviations for this testing were 

compared against two sets of data; one from MRT testing performed by Coyne and Barker 

and another STI study performed by Symons (23,24). For the STI method to be considered a 

suitable SI measurement for facial and respiratory PPE worn by HCW, the standard 

deviation should be less than those found by Coyne and Barker using the MRT to evaluate 
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full facepiece air-purifying respirators(24). The standard deviations found during the tests 

should also be similar to those found by Symons (23) when testing SI of full facepiece 

respirators using the NFPA 1981:2013 method. At the time of this study, no STI testing had 

been done on the respirator models utilized in this study, so the data from full facepiece 

respirators was used as a comparison of the means and standard deviations. This is 

illustrated in the data shown in Table II.

To assess reproducibility of the measurements, the means of each sample were compared 

between donnings of the same sample. An analysis of variance (ANOVA) was performed for 

each full facepiece respirator tested comparing the means by sample and donning. The 

differences in means between each donning were again compared to data from full 

facepieces tested using the NFPA method from Symons (23). The differences in means 

should be similar to data from Symons (23). Upon closer examination of the standard 

deviations in Table III of each sample donning, it is noted that the largest standard deviation 

is 0.026 (3M 1860), with the average deviation across all models, samples, and donnings 

being 0.012. A chi-square test for SD less than 0.03 shows that the standard deviations of 41 

of the 54 sample donnings were less than 0.03 STI or 3% of full scale with a 90% 

confidence interval.

From Coyne and Barker, the average standard deviation among listeners across all 12 full 

facepiece samples using the MRT method was 9.9% (24). From Symons, the average 

standard deviation across all three facepieces and 7 test runs was 0.014 STI when using the 

NFPA STI method (23). The standard deviations found in this study (0.012 STI) were less 

than those found by Coyne and Barker using MRT (9.9%) and similar to those found by 

Symons (0.014 STI) (23,24).

Day 1 Testing—For the first experimental condition, the difference in means were 

assessed using a one-way ANOVA for each model sample. For both N95 FFR models (3M 

1860 and 1870), the data from each sample donning is not statistically different (p > 0.05). 

Similarly, for the PF (KC 49214 and 3M 1818), the data from each sample donning can be 

considered statistically equivalent with p > 0.05. For the EAPR’s (North 5500 and Scott 

Xcel), only sample 3 in each case was found to be statistically equivalent. For the North 

5500, the maximum difference in means between donnings was 0.052 for sample 1 and 

0.042 for sample 2. For the Scott Xcel, the maximum difference in means between donnings 

was 0.024 for sample 1 and 0.052 for sample 2.

Day 2 Testing—The graph in Figure 3 shows data from the second experimental condition 

(STI measurements utilizing modified pink noise levels of 52.5 dBA (−2 SNR) to 72.5 dBA 

(+7 SNR) in 5.0 dBA increments. The graph in Figure 3 illustrates that significant 

differences in SI exist between the different classes of PPE tested and the effect of 

background noise. This is shown in the boxplot illustrating STI scores by model in Figure 4 

at a background noise level of 57.5 dBA (−15 SNR). Overall, the PF (Kimberly Clark 49214 

and 3M 1818) had the least effect on SI interference, typically deviating from the STI 

baseline (no-mask condition) by 3% and 4% STI for the Kimberly Clark 49214 and 3M 

1818, respectively. The N95FFR had more effect on SI interference, typically differing from 

baseline by 13% for the 3M 1870 and 17% for the 3M 1860. The EAPR’s had the most 
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significant impact on SI, differing from the baseline by 42% for the Scott Xcel and 45% for 

the North 5500.

DISCUSSION

The STI score ranges from 0 to 1.0 as shown in Figure 5 and predicts the likelihood of words 

and sentence comprehension. Table IV illustrates the relationship between the STI, 

subjective intelligibility measures, and intelligibility ratings. A value of 0 is equivalent to a 

very poor SI, while 1.0 is an ideal channel with excellent speech transmission. The products 

tested in this study fall into the poor/fair (EAPR), good (N95 FFR), and excellent (PF) 

ranges.

From the results of both experimental conditions, it is seen that PF have the least impact on 

SI under these test methodologies followed by N95 FFR and EAPR. PF yielded the highest 

STI scores during both experimental conditions, most likely due to the thinness and type of 

materials used in their design and that they do not adhere as firmly as N95 and EAPR to the 

face, allowing sound to dissipate through gaps in the PF-to-face contact area. However, 

unlike the N95 and EAPR, the PF is not intended for respiratory protection. From a design 

perspective, the potential gains that could be made to both the N95 FFR class and PF class in 

terms of SI would be incremental.

Some of the overall trends observed here (EAPR < N95 FFR < PF) agree with those from 

human subject studies (20). In one set of experiments, Radonovich et al. (20) reported that the 

North 5500 EAPR showed a speech intelligibility rating of 72% compared to an 85% 

average from six disposable N95 FFRs (including the 3M 1860 used in this study) and one 

powered air purifying respirator. However, unlike this study, word intelligibility between PFs 

and N95 FFRs were not found to be statistically different. According to Table IV, the STI 

value of 0.45 found for the North 5500, falls in the upper range of the “poor” quality 

category or lower range of “fair”, corresponding roughly to an intelligibility between 67% 

and 87%, that is consistent with a previous study which reported an average three foot MRT 

score of 73% and 88% (Tables II, III Radonovich et al. (20)), depending upon the 

experimental conditions. Likewise, the one N95 FFR (3M 1860) common to this study 

(average STI = 0.71) and the Radonovich(20) study resulted in an average three foot MRT 

score of 91%, which falls in the middle of the “good” quality category.

Based on the data from this investigation, a minimum pass/fail criterion of ≥70 (0.70 STI) 

with respect to the NFPA STI standard is suggested as a baseline for current facial PPE, in 

the development of future B95 respirator standards (19). Facial and respiratory PPE with an 

STI of ≥70 fall within the “good” quality range according to IEC 60268-16 (Table IV). 

Further support for setting this level as a baseline can be found when comparing the results 

of this study with the Radonovich et al. study (20). The 3M 1860 N95 FFR with an STI of 

0.71 was not found to be statistically different from control (no facial PPE) using the MRT 

(see Table II, Radonovich et al. (21)). Thus, facial and respiratory PPE with STI values ≥70 

likely have little negative impact on SI.

Palmiero et al. Page 7

J Occup Environ Hyg. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beyond facial and respiratory PPE design factors, controlling background noise in the 

healthcare environment will be paramount in improving SI in future healthcare 

environments. This can be accomplished through architectural design improvements, 

engineering controls and quieter equipment. As shown in Figure 3, with increasing 

background noise SI decreases and the differences between the PPE types quickly shrinks. 

Furthermore, a HCW using either an N95 FFR or a PF loses little with respect to SI. Thus, 

reducing background noise will be one of the most effective ways to improve SI in 

healthcare environments.

STUDY LIMITATIONS

Limitations of this study include time, non-human testing, uni-directionality and difficulty to 

generalize findings based on the limited number of samples used for each PPE type. A non-

human modality was undertaken for this study for the purposes of objectivity and time 

constraints. The uni-directionality of testing was performed in order for the results to be 

valid, consistent and reproducible. Testing in multiple angles or distances would 

considerably increase the amount of time and resources needed. The surgical masks used 

were a flat-fold design whereas the N95 FFRs were cup-shaped (3M 1860) and tri-fold (3M 

1870), rendering them further away from the face when donned. No models tested contained 

exhalation valves or voicemitters, which may have an effect on SI.

FUTURE WORK

If SI becomes a performance requirement for future “B95” respirators, the STI methodology 

used in this study could be used for testing and certification requirements and standards 

development. Also, independent replication of this experimental work would provide 

validation of the STI method as a reliable methodology for testing different types of PPE. 

Data could also be used for benchmark testing and design improvements for manufacturers 

of facial and respiratory PPE. Further investigation into a more diverse range of models and 

sizes under different conditions (different directions, reverberation, etc.) would be valuable 

contributions as well. Future studies should identify the design features that could lead to 

EAPRs and N95 FFRs with STI scores in the excellent range, which would allow a higher 

B95 standard STI pass/fail criterion to be considered (e.g., 0.75) in the future.

CONCLUSIONS

The PF models studied here (Kimberly Clark 49214 and 3M 1818) had the least effect on SI 

interference, typically deviating from the STI baseline measurement (no-mask condition) by 

3% and 4% STI. The two N95FFR models (3M 1870 and 1860) had a greater effect on SI 

interference compare to the PF models, typically differing from the STI baseline 

measurement by 13% for the 3M 1870 and 17% for the 3M 1860. The two EAPR models 

(Scott Xcel 742 and North 5500) had the most significant impact on SI, differing from the 

baseline STI measurement by 42% for the Scott Xcel and 45% for the North 5500 shows the 

sounds pressure levels per octave band for each respirator model during the testing with the 

background noise at 52.5 dbA (−15 SNR).
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Figure 6 illustrates why the EAPRs performed worse than the N95’s and surgical masks. 

Examining the sound pressure level in the 1kHz to 4 kHz range, it is noted that the sound 

pressure level for both EAPR models is lower than baseline by approximately 10 dBA at 

1kHz, 20 dBA at 2kHz and 15 dBA at 4kHz. This indicates that the STI signal sound 

pressure level has been significantly attenuated by the EAPR facepiece in these frequency 

ranges. Furthermore, at the 2kHz and 4 Khz frequencies, the sound pressure level of both 

EAPR models is nearly equivalent to the background noise level. Thus, the STI signal is 

masked by the background noise and intelligibility in these key frequency ranges is 

significantly degraded. To a lesser degree the same observation can be made about the N95 

respirators (3M 1860 and 3M 1870).

The thinness and thickness of the materials used in the construction of the respirators and the 

materials themselves (e.g. silicone vs. polypropylene) may also be contributing factors to the 

variation in STI scores between respirator models and samples. The rigidity, type and 

number of materials used in the speech path are all contributing factors to the STI score. 

These factors should be taken into consideration and investigated further as the next 

generation of facial PPE is developed.
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FIGURE 1. Test System Schematic
*Adapted from NFPA 1981: Standard on Open-Circuit Self-Contained Breathing Apparatus 

(SCBA) for Emergency Services, 2013 Edition.
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FIGURE 2. 
STI Testing Setup inside Hemi-Anechoic Chamber.
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FIGURE 3. 
2nd Experimental Condition.
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FIGURE 4. 
Boxplot of STI Score by Model at −15 SNR.
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FIGURE 5. 
Speech Transmission Index.
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FIGURE 6. 
Sound Press per Octave Band
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TABLE I

Facial and Respiratory PPE Models.

Mask Type Model Size

N95 (FFR) 3M 1860
(70070612364)

Medium-Large

N95 (FFR) 3M 1870
(70071564523)

One Size

Surgical Mask KC Tecnol 49214 One Size

Surgical Mask 3M 1810F
(EN14683:Type II)

One Size

EAPR North 5500 Medium
(550030M)

EAPR Scott Xcel 742 Half Mask Medium/Large
(7421-213)
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TABLE II

Comparison Data (MRT and STI).

Facepiece Listener 1
Std Dev

Listener
2 Std
Dev

Listener 3
Std Dev

Pooled Std
Dev Across
Listeners

3M FR-M40 8.0 11.6 6.0 8.5

Avon C50 10.2 10.9 3.5 8.2

Peltor M-TAC 7.4 5.8 9.8 7.7

Drager CDR 4500 6.8 5.7 6.5 6.3

MSA Millenium 8.5 2.6 9.4 6.8

Survivair Optifit 9.6 13.6 5.3 9.5

MSA Ultra Elite 5.0 1.9 10.0 5.6

Scott M120 5.4 5.5 7.0 6.0

North 5400 6.5 9.7 8.2 8.1

3M FR 7800B 7.4 7.9 11.6 9.0

Scott M110 8.3 4.4 9.4 7.4

Avon FM12 3.1 5.9 7.4 5.5

Pooled Std Dev 7.4

*Data aggregated from Coyne and Barker(24) Tables: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,

Facepiece
Test
Run Mean St Dev

1A 1 0.538 0.014

1A 2 0.555 0.012

1A 3 0.535 0.012

1A 4 0.514 0.018

1A 5 0.553 0.017

1A 6 0.540 0.012

1A 7 0.531 0.014

2A 1 0.535 0.024

2A 2 0.567 0.014

2A 3 0.536 0.012

2A 4 0.519 0.013

2A 5 0.553 0.012

2A 6 0.544 0.016

2A 7 0.539 0.015

3A 1 0.547 0.018

3A 2 0.550 0.013

3A 3 0.537 0.010

3A 4 0.533 0.010

3A 5 0.549 0.012
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Facepiece
Test
Run Mean St Dev

3A 6 0.543 0.011

3A 7 0.525 0.011

pooled std dev 0.014

Pooled difference between means 0.016

* Data from Symons [2012] Table 2
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TABLE IV

Relationship Between STI, Subjective Intelligibility Measures and Intelligibility Ratings.

STI
Value

Quality
according to

IEC 60268-16

Intelligibility of
Syllables in %

Intelligibility
of Words in %

Intelligibility
of Sentences

in %

0 - 0.3 bad 0 - 34 0 - 67 0 - 89

0.3 - 0.45 poor 34 - 48 67 - 78 89 - 92

0.45 - 0.6 fair 48 - 67 78 - 87 92 - 95

0.6 - 0.75 good 67 - 90 87 - 94 95 - 96

0.75 - 1 excellent 90 - 96 94 - 96 96 - 100
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